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,-fbstract — In this paper a class of two- and three-dimensional monolithic

microwave integrated circuit (MMIC) structures is theoretically analyzed

using an efficient iterative technique. The transfer-matrix approach to

constructing the spectral Green’s functions of multilayered structures is

adopted. Discretization of the continuous functions and exploitation of the

periodicity of the MMIC structures enclosed by side walls lead to a

discrete convolution operation, which can be carried out numerically

efficiently using the FFT algorithm. The spectraf Green’s functions are

modified for both the periodic and aperiodic structures to improve the

numerical efficiency of the iteratiye algorithm. Numericaf results are

presented and compared with available data.

I. INTRODUCTION

P LANAR MICROSTRIP structures used in MMIC

design, such as multiconductor transmission lines,

patches, and discontinuities, have been extensively analyzed

in the past two decades by several authors using the

quasi-TEM approximation. This approximation avoids ex-

tensive numerical calculations in the full-wave analysis,

and yet provides useful results sufficiently accurate for

practical applications up to a few gigahertz.
Coupled planar transmission lines have been analyzed

using the following approaches: conformal mapping [1];

dielectric Green’s function method [2]; variational method

[3]; and Galerkin method in the spectral domain [4].

Multiconductor transmission lines have been treated in [5]

and, more recently, in [6] and [7]. There is no theoretical

limit to the number of dielectric layers or conducting lines

in these formulations; however, they require either the

solution of a large matrix equation or extensive analytical

or numerical calculations.

Finite-sized or lumped circuit elements such as micro-

strip patches are also commonly used in MMIC’S. Capaci-

tances of square and circular patches have been calculated

in [8]–[11 ]. In the above papers, accurate and rapid solu-

tions have been obtained using the spectral Gelerkin pro-

cedure with a set of prechosen basis functions. However,

the choice of basis functions for an arbitrarily shaped

patch is often not readily available.

For computer-aided design of MMIC’S, microstrip dis-

continuities are often represented by equivalent circuit

parameters [12]. [13]. One of these parameters, the equiv-
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alent capacitance of a microstrip discontinuity, is calcu-

lated by discretizing the excess charge distribution [13] in

the discontinuity and its surrounding regions using subdo-

main basis functions, e.g., square pulses, and solving for

the unknown amplitude of these pulses with the standard

moment method procedure. However, the matrix equation

resulting from an application of this approach can be very

large and its elements often require an excessive computa-

tional time.

Recently, an iterative scheme based upon the minimiza-

tion of the integrated square error has been developed by

van den Berg [14]. It has been applied to the problem of

analyzing the electric-field problem of an interdigital

transducer in a multilayered structure [15] and to a class of

multiconductor cylindrical transmission lines [16]. In this

iterative procedure, the large matrix storage requirement is

alleviated and numerical efficiency is obtained by using

the fast Fourier transform algorithm (FTT).

In this paper, a variety of two- and three-dimensional

MMIC structures are analyzed using the iterative proce-

dure described in [14, table V] by van den Berg for the case

where the number of dielectric layers in these MMIC

structures is arbitrary. It is assumed that the principal axes

of the permittivity tensor and the conductivity tensor

coincide and that only the diagonal terms are nonzero. The

choice of basis and testing functions, as well as the numeri-

cal treatment of the Green’s functions that improves the

numerical efficiency of the algorithm, is discussed. In

order to apply the FFT, all the dimensions of the MMIC

structures are chosen to be multiples of the discretization

value Ax or A y. Numerical results for each of the MMIC

structures discussed in this paper are presented and com-

pared with published data, when available.

II. OUTLINE OF THE THEORETICAL PROCEDURES

The general configuration to be investigated is shown in

Fig. l(a) and (b) with the permittivity tensor c and conduc-

tivity tensor cr given by

‘=~ : ;] .=~ ; ;). (1)

We define the regions that coincide with the conducting

strips as the domain D of the problem and the comple-

mentary region as the range R. In this study, the strips are

assumed to be infinitely thin, although the extension to the
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Fig 1. The general multilayered MMIC structures. (a) One layer of
strips. (b) Two layers of strips.

finite thickness strips can be found elsewhere [3], [16].

Uncle< the quasi-TEM approximation, we may assume

v x E = O. With the factor e~“’ suppressed, the electric

field ~ and the electric potential V are related by

E’=-vv. (2)

The electric field, in turn, is related to the current density

as follows:

:=(u+ju). i. (3)

Using the continuity equation v ,J+= O in conjunction with

(3), we obtain a differential equation satisfied by the

electric potential V for each of the layers:

v“[(u+j@6)”vv] =0. (4)

The Green’s function for the problem can be constructed

from the solution of this differential equation subject to

appropriate boundary conditions. The boundary condi-

tions for these MMIC structures are the continuity of the

electric potential V across any interface, constant voltage

excitation U on the concJucting strips or patches, and a

nonzero current density J confined to the domain D. Once

the Green’s function is derived, we can simply cast the

problem into one of solving the integral equation

U(s) = ~ G(s’, s)( jup,(.s’)) ds’ (5)
D

where G is the Green’s function in the spatial domain and

p. is the unknown surface charge distribution: The term

jup, replaces the role of the current density Y. The total

charges on the conductors are obtained by integrating p. in

the domain D. Once the total charge on each of the

conducting strips or patches is known, the various design

parameters of the MMIC structures, e.g., the capacitance,

inductance, effective dielectric constant, and the character-

istic impedance, can be readily obtained [16].

111. THE SPECTRAL GREEN’S FUNCTIONS

Prior to formulating the integral equation using the

spectral domain approach, we need to derive the spectral

Green’s function for the geometry under consideration.

The spectral Green’s function can be derived by solving

Laplace’s equation together with the appropriate boundary

conditions of the structure [3], [16]. However, a new de-

rivation of the Green’s function is required whenever an

dditional layer of dielectric is added to the structure. Two

approaches, which are quite similar to each other, have

recently been introduced for deriving the spectral Green’s

functions for a multilayered structure. A simple recurrence

formula has been presented in [17] and a transfer-matrix

formulation has been discussed in [15]. In both of these

approaches, an additional dielectric layer only results in an

extra 2 x 2 matrix multiplication in the transfer matrix or

the recurrence formula; hence, these approaches are well

suited for computer-aided design of MMIC’S. In this paper,

we adopt the transfer-matrix formulation of [15], because

this procedure is simple to follow.

The details of deriving the spectral Green’s function for

the structure in Fig. l(a) using the transfer-matrix ap-

proach can be found in [15], and only the final result is

included here for completeness. The derivation procedure

can be readily extended to the structure consisting of two

or more layers of strips by enforcing the additional

boundary conditions on the interfaces at which the extra

layers of strips are located. The spectral Green’s function

for the structure in Fig. l(b), which has two layers of

strips, is presented here with the details of the derivation

omit ted.

The spectral Green’s function for the convolution in-

tegral of (5), employed to analyze the structure of Fig. l(a),

is given in [15]. It reads

1
G(a)= ,

Y1 (a)+ Y;(a)
(6)

where

and

If the top layer of the structure is shielded, i.e., the plane

at z = ZM is grounded, the expression for YJ ( a) is mod-

ified as follows:

(8a)

Similarly, if the plane at z = ZN is grounded, we have

(8b)

The transfer matrix T appearing in the above expression is

defined as follows:
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where

Tm(a,z) =

[

cosh YmZ

– Y~ sinhy~z 1-~;;:yz(lo)

?’nz(~)= IWL,J’K,,J1’2 (11)

Yn(a) = j@l(KX, m-K .,m)”2
(12)

K X,m , + Ox,m/jo=Cxm (13a)

K , /ju=Czm+uzmZ,m ,
(13b)

and the square roots are defined as Re ( 000 )1/2 >0. Ex-

pressions similar to (9) to (13) can readily be obtained for

the layers below z = O by replacing 1, M, and m by 1’, N’,

and n’ in (9) to (13), respectively.

Following the derivation given in [15], and enforcing the

boundary conditions on the two layers of strips, we obtain

the spectral Green’s function for the structure shown n

Fig. i(b). It is given by

[

Gil(a) (512(LI)
G(a) =

G21((X) G22((X)1

—

where

- Y; + Y~cothyld Yl, /sinhyl,d

c(a)
Yl, /sinhyl,d

c(a)

C(a)

Y; + Yl, cothyl,d

c(a)

C(a) = [– Y;Y27 +(Y; – Y27)Y1/cothyl/d + Y;

Note that the spectral Green’s function is a 2 x 2 matrix

because of the coupling between the two layers of strips.

It is preferable to use the spectral Green’s function given

in (6) rather than the spatial one, because we can effi-

ciently compute the convolution integral in (5) via the

FFT. In the next section, we go on to discuss some

numerical aspects for solving (5) for some aperiodic and

periodic problems arising in MMIC design, Some of ,these

numerical aspects have been discussed by Peterson [18]

and Chan and Mittra [19].

IV. NUMERICAL CONSIDERATIONS FOR APPLYING

THE FFT TO PERIODIC AND APERIODIC PROBLEMS

Strictly speaking, the FFT algorithm, which is discrete

and circular in nature, is directly applicable for analyzing

periodic geometries. However, it can be still used to ad-

dress aperiodic problems if they are approximated by

introducing two electric side walls that are sufficiently

removed from the center strips. Additional approxima-

tions, which we will discuss in the latter part of this

section, can be used to reduce the size of the FFT for the

aperiodic case, and to make the iterative procedure

numerically efficient. A discussion of the numerical treat-

ments for the periodic and aperiodic structures is given

below.

(14)

(15)

Electric

LIZ I -1

+s ~+;~;-I~H
(’1) (b)

Fig. 2. Pcnodic MMIC structures. (a) Periodic structure without side
walls. (b) Periodic structure with two side watls,

A. Periodic Structures

The spectral Green’s function given in Section III can be

employed for periodic structures, although special numeri-

cal treatment is necessary to apply the FFT to this Green’s

function because of its infinite support. To demonstrate

how the FFT can be applied correctly, we consider the

periodic structures shown in Fig. 2(a) and (b). The periodic

cell of Fig. 2(a), or the region between the two side walls in

Fig. 2(b), both of which have the dimension L, is dis-

cretized into N subregions, where N = 2m. Assuming that

the potential U and the surface charge density p. are

approximately constant over the subregions, U and p, can

be expressed as a sum of rectangular pulse basis functions

with known amplitudes U(n) and unknown amplitudes

P.(n), respectively. After some manipulation, the convolu-

tion integ~al in (5) can then be rewrit~en as

@[l!l(12Ax)]

=@[F-l{ @)~(a)(FFT(p, (rz))*8(n+ mN)) } ] (16)

where @ is a truncation function with value equal to 1

when n Ax is inside the domain D and zero otherwise.

Similarly, P,(n) is nonzero only if n Ax ● D. F-1 repre-

sents the inverse Fourier transform operation and the FFT

is defined from – N/2 to N/2 – 1; Ax and a are equal to

L/N and (n+ mN)2~/L with – m < m < co, respec-

tively; S(a) = sin (a)/a is the Fourier transform of the

rectangular pulse. The asterisk in (16) represents a con-

volution operator. The support of the inverse Fourier

transform in (16) is still infinite; however, this could be

overcome by applying the Galerkin procedure, i.e., multi-

plying both sides by the rectangular pulses and integrating

over the corresponding subregions. We then obtain

@[iY(n)] =@[FFT-l{@(a)FFT( p,(n))}] (17)

where

P?2 + m

G’(a) = ~ G(a’)’f(a’)fi(a’). (18)
>?l=—m

The asterisk represents the complex conjugate operation

and a’ = (n + mN)2n/L. The truncation on m depends on

how fast the product of the spectral Green’s function and

the magnitude square of the Fourier transform of the basis

function decays away from a = O. The charge density

distribution in (17) of the periodic structures can readily

be solved for via the iterative algorithm outlined in [14].
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The procedure outlined above is applicable only to

periodic structures, and a different approximation scheme

is required for the aperiodic case. This is described ~in the

following subsection.

B. Aperiodic Structures

An aperiodic structure can be approximated by a peri-

odic one by introducing two side walls far away from the

conducting strips. This is accomplished by letting L in

Fig. 2(b) to be sufficiently large, such that the side walls do

not have a significant effect on the electric potential around

the strips. We can then follow the same procedure as in the

periodic case discussed above. However, this requires us to

use a large value of N and increases the computational

time significantly. We show below how we can circumvent

the problem by further approximating the Green’s func-

tion such that a much smaller N can be used without

compromising the accuracy of the computation.

The Green’s function can be approximated by assuming

that it is constant over the individual subregions in the

spatial domain. Let the potential U and the surface charge

density p. be discretized, once again using rectangular

pulse basis functions. From signal processing theory, we

can show that the convolution integral in (5) can be carried

out with a (2 M – I)-point FFT, where M is the number of

subregions from the left edge of the leftmost strip to the

right edge of the rightmost strip. If we use a radix-2

N-point FFT, we should choose the minimum N such that

N > (2M – 1). Using this criterion, the spatial Green’s

function can be obtained from the spectral one via a

numerical transform.

The spectral Green’s function in Section III is sampled

at the values of 2vn /NNAx, where – NN/2 < n < NN/2

– 1 and NNA = L. Typically, we choose NN = 1024 for a

one-dimensional problem and NN x NN = 512 x 512 for a

two-dimensional one. These data points are inversely Fou-

rier transformed into the spatial domain by using an

NN-point FFT. Although NN is large, this FFT operation

need be carried out only once. The approximated spatial-

domain Green’s function is then truncated such that only

those terms within the range – NN/2 << – N/2 < n <

N/2 – 1<< NN/2 – 1 are retained. It is noted that an

equivalent procedure is discussed in [15], except all the NN

terms were retained there.

To illustrate the versatility of the iterative approach in

solving (5) for the periodic and aperiodic MMIC structures

under the approximation mentioned above, we will con-

sider both the two- and three-dimensional problems in the

following sections.

V. TWO-DIMENSIONAL PROBLEMS

Planar transmission lines find many applications in

MMIC design as well as in microelectronic packaging.

These transmission lines are usually assumed to have in-
finite extension in the y direction, as shown in Fig. 1. In

this section, we will consider two examples of these trans-

mission lines, viz., a broadside, edge-coupled symmetric

strip transmission line which is a periodic problem and a

Fig. 3. A broadside, edge-coupled, symmetric strip transmission line

multiconductor planar transmission line in a piezoelectric

substrate— an aperiodic one. Although not discussed here,

many other types of planar transmission lines, e.g., micro-

strip, buried microstrip, and strip lines, can also be analyzed

by utilizing the novel representation of the spectral Green’s

function.

A. Broadside, Edge-Coupled, Symmetric Strip

Transmission Line

Recently, considerable interest has been shown in using

a broadside, edge-coupled, symmetric strip transmission

line in MMIC’S as a basic building block for directional

couplers, filters, and broad-band mixers [20], [21]. A

schematic diagram of one of these transmission lines is

depicted in Fig. 3. This structure can support four propa-

gating modes referred to as

1) even–even mode (ee): Ull = U1~ = U&= U&

2) even–odd mode (co): Ull = Ulz = – Uzl = – Uzz

3) odd–even mode (oe): Ull = – Ulz = Uzl = – Uzz

4) odd–odd mode (00): Ull = – Ulz = – Uzl = Uzz.

Equation (16) can be solved iteratively using the Green’s

function derived in (14). Due to the symmetry of the

problem, the characteristic impedance (Z) and the effec-

tive dielectric constant (c,ff ) can be written in terms of the

total charge Q on one of the lines as

Z.
z=

(QQO)”2
(19)

Q
Ceff = ~ (20)

Uo

where Q and Q. are the total charge on one of the strips

with and without the dielectric, respectively, and ZO is the

characteristic impedance in free space. The total charge on

the strip is obtained by integrating the charge density

distribution across the strip after solving (16).
Although this structure is symmetric, the iterative al-

gorithm is written such that each of the strip’s widths w as

well as the separation between the strips s can be different.

Some numerical results on the effective dielectric constant

of the structure shown in Fig. 3 will be given in Section
VII.

B. A4tdticonductor Planar Transmission Lines in a

Piezoelectric Substrate

To illustrate the numerical efficiency achieved by apply-

ing the numerical treatment of the Green’s function for the
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aperiodic structure, we consider the multiconductor planar

transmission lines in a piezoelectric substrate shown in

Fig. 4. van den Berg and his associates have successfully

applied iterative procedures to solve the electric-field prob-

lem of an interdigital transducer in a multilayered struc-

ture [15]. In [15], the conducting strips are excited such

that the net electric current in the configuration vanishes.

Furthermore, integration of the potential along the inter-

face at which thestrips are located also yields zero. How-

ever, in a general transmission line structure, the voltage

excitation applied to thestrips can be arbitrary. This is the

case, for instance, when oneisinterested in computing the

Maxwell capacitance matrix of an N-1ine configuration

and needs to solve (5) N times for N independent sets of

excitations. To simulate the infinite domain in which the

conducting strips are located, a period of 50 times the

width of one strip is used in [15]. In Section VII, we will

demonstrate how the numerical treatment discussed in

Section IV reduces the size of the period actually required.

VI. THREE-DIMENSIONAL PROBLEMS

When the width of the transmission line in Fig. 1 varies

along the length of the line, or the line has a finite length,

the two-dimensional problem becomes three-dimensional

in nature. The spectral Green’s function given in Section

111 can be modified to treat the three-dimensional prob-

lem. However, to keep the modification simple, we assume

that the diagonal elements of the permittivity tensor in (1)

are all equal and set all the elements of the conductivity
tensor in (2) equal to zero. The three-dimensional struc-

tures discussed in this section are aperiodic and, in order

to apply the FFT, we need to introduce four electric side

walls sufficiently far away from the conducting patches or

discontinuities under consideration. The separations of the

side walls in the x- and y directions are designated as Lx

and L),, respectively. To obtain the three-dimensional

spectral Green’s function (?( j3, {), we simply replace the

parameter a in (6) and (14) with ~~, where /3 =

n 2 ~/L, and { = m 2 IT/LJ:. Similarly, the one-dimensional
FFT becomes two-dimensional in solving (5). The trunca-

tion of the spatial Green’s function in the y direction

follows the same criterion for the one in the x direction.

Only some illustrative three-dimensional structures are dis-

cussed in this section. Extension to treat many other

structures, e.g.. two arbitrarily shaped coupled patches

which lie on the same plane or are separated by a dielectric

slab, is straightforward.

t
Square Patch I

Circular Patch

F]g. 5. A square md a circular microstrip patches

A. Microstrip Patches as Lumped Circuit Elements

In MMIC’S, many finite-sized or lumped elements are

employed to realize the desired functional devices. Hence

the analysis of these finite-sized elements is of interest.

Among these finite elements, square and circular patches

(shown in Fig. 5) have been analyzed more frequently than

the others because the charge densities on these structure

can be expanded in terms of a set of entire domain basis

functions [8]–[11] with certain special properties, viz., ana-

lytical Fourier transformability, built-in edge condition for

the charge distributions, and ability to generate asymptotic

formulas [11]. However, for an arbitrarily shaped patch,

the choice of these entire domain basis functions is not

readily available and this prompts us to use subdomain

basis functions, such as the rectangular pulses discussed in

Section IV.

In order to employ the rectangular pulse type of basis

functions to solve (5) and to apply the numerical treatment

of the Green’s function discussed in Section IV, we need to

carry out an inverse FFT on a large-sized array sampled

on the two-dimensional spectral Green’s function. For-

tunately, in a typical fabrication scenario, the thickness

and the permittivity of the dielectric are fixed at certain

prechosen values. Hence, for this type of situation, we

need to carry out the inverse FFT only once and store the

truncated spatial Green’s function, thus generated, as a

data base for MMIC designs.

Once the spatial Green’s function has been obtained, (5)

can be solved with the potential U on the patch’ set equal

to 1 V. The capacitance of the patch is then given by

C=~pJ(s)ds.
D

(21)

Numerical results for the normalized capacitance will be

presented in Section VII for a square and a circular patch.

Because of discretization using rectangular pulses, the pe-

riphery of the circular patch, or of any other arbitrary

shape, can only be approximated in a piecewise manner.

B. Equivalent Capacitances for Discontinuities in Microstrip

Lines and at the C~ossing of Orthogonal Strip Lines

Abrupt change of line width in planar transmission lines

is often unavoidable for printed circuit routing. Some-

times, such a discontinuity is even introduced deliberately

to realize an inductance or a capacitance. Another form of

discontinuity is found in the vicinity of a crossing between

two orthogonal strip lines, where there exists a strong

coupling between these strip lines. Both of these discofi-

tinuities, viz., the change of width and the cross coupling



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO, 1, JANUARY 1988 101

,1 I I
I

T{ T2

Fig. 6. The equivalent circuit for mlcrostrip discontinuities.

I

@“~q~
-pl-j-~q~

II !1 II
‘1 7 T2 ‘2 f’1 TI T2 P2

Fig. 7. Double step microstrip discontirmities.

between two striplines, can be characterized by an equiv-

alent circuit of the type shown in Fig. 6. In this paper, we

will only address the problem of computing the equivalent

capacitance, except to mention that a similar procedure

can be used to derive the equivalent inductance of the

discontinuity.

To find the equivalent capacitance of a double step

discontinuity, Kitazawa [22] has formulated the problem

of determining the excess charge density on the transmis-

sion line in the presence of the discontinuity. The same

formulation is employed herein for the first type of discon-

tinuity problem and is later extended to characterize the

disturbance of surface charge density near the crossing of

two orthogonal striplines.

1) Microstrip Discontinuities: Two different microstrip

discontinuities are shown in Fig. 7(a) and (b); DO denotes

the regions with uniform width, whereas D1 and Dz denote

the irregular regions. To characterize the discontinuity, we

need to find, as a first step, the charge density P,. on the

uniform line denoted by DO for a 1 V excitation, using the

procedures outlined in Section V. We define the excess

charge density p,,,x as the difference between the charge

density of the structure D and that of the uniform struc-

ture DO when both are excited by 1 V; it should be noted

that p, ,x is only defined on D. After some manipulation,

we have

%.= jj ( @P,..) ds (22)

where for the discontinuity in Fig. 7(a)

[

o on DO

% = l–j G(jcop,o)ds
(23)

on D1 and Dz
%

and for the discontinuity in Fig. 7(b)

%x= J G(ju)(p~1+p~2)ds. (24)
111,D2

u’=,: “’’’’’”w-
Fig. 8. Two orthogonal strip lines.

The densities p,l and p,z are p,. in regions D1 and D2,

respectively. The excess charge is essentially negligible,

beyond a distance approximately equal to the actual line

width away from the discontinuity [13]. Hence, the domain

of integration in (22) can be limited to the region bounded

by the planes PI and Pz indicated in Fig. 7.

Once the e~ess charge density has been solved for, the

equivalent capacitance AC can be defined as

AC= ~lp~exds + ~,p,o ds (25)

where S1 and S2 are the regions bounded by the planes PI,

Pz and Tl, Tz, respectively. Numerical results of the nor-

malized equivalent capacitance for double-step discontinu-

ities will be presented in Section VII.

2) Crossing of Two Orthogonal Strip Lines: The surface

current and charge density on a strip line, near the vicinity

of its crossing with another stripline which is orthogonally

placed above or below it, is expected to be a perturbation

from those on an isolated strip line. The disturbance of the

surface current or the charge density on the strip line can

also be characterized by an equivalent capacitance. Since

either an even (Ul = .5?2=1 V) or odd (Ul = – Uz =1 V)

excitation can be applied to the two orthogonal strip lines

depicted in Fig. 8, we need to compute both the even and

odd equivalent capacitances for the strip lines.

Excess charge densities p$~xl and p, .X2 can be defined

for the two orthogonal strip lines similar to the one for the

microstrip discontinuity. These excess charge densities

satisfy the following equations:

+.. 1 = J fGllp, exlds + ~2%P3eX2 d’ on D1 (26a)
D,

%2 = /f21P,,ex1 ds + /D, G22P, ..2 dS on Dz (26b)

where

%.1 = – j/12Ps2 d’ on D1 (27a)

@.xz= –/DG~lP,I ds on D2. (27b)
1’

P,1 and P,Z are the charge densities on the striplines DI
and Dz, respectively, in the absence of the other line.
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Fig. 9, Effective dielectric constants of the broadside, edge-coupled

microstrip with inverted dielectric shown in Fig 3; s/b = d/b = 0.2,
t/b = 0, c/b = 10, and c, =10.

The excess charge densities are solved by the iterative

algorithm, and the equivalent capacitance can be defined

similar to the one for the microstrip discontinuity. Hence,

the equivalent capacitances for the orthogonal striplines

can be expressed as

/AC1 = ~ PSexlds + ~l,P,l ds for strip line DI (28a)
x 1

AC2 =
J P.exz ds + J

p, ~ds for strip line D2 (28b)
Y. 21 s~2

where S1~, Slz, S21, and Szz are the regions bounded by

the planes Pll, P1l, Tll, Tlz, P21, Pzz, and T?l, Tzz,
respectively. Numerical results for the ‘excess charge of two

equal-width orthogonal strip lines for both even and odd

excitations will be presented in the next section.

VII. NUMERICAL RESULTS

Numerical results for the MMIC structures discussed

above will now be presented. The iterative scheme em-

ployed to derive the results is based upon an improved

iterative approximation to the solution of the functional

equations discussed in [14]. The iterative procedure is

terminated when the boundary condition error (BCE) [15],

[19] is smaller than 1 x 10-4, or 0.01 percent. This iterative

procedure is very efficient and only a few iterations are

required for all the structures analyzed in this paper.
To illustrate the numerical efficiency of the iterative

algorithm, let us first consider the broadside, edge-coupled,

symmetric strip transmission line shown in Fig. 3. The

spectral Green’s function for this structure is constructed

and modified according to (14) and (18), respectively. Due

to the rapid decay of the product of the spectral Green’s

function and the magnitude square of the transform of the

rectangular-pulse basis function away from a = O, the sum-

mation index m in (18) is chosen to be zero. This modified

spectral Green’s function is substituted into (17) and is

solved iteratively using a 512-point FFT. The effective

dielectric constants for the four propagating modes that

8.53x 10-10 -1.27~ 10-11 -2.1).5x ]0-!2 –4,9= ]o-ll -I,58x ]o-lJ
-1.27x 10-1] 8.53x 10-10 –1,27x 10-11 -2,05.s 10-12 -4.92x 10-13

c= ‘2.06x 10-12 -1.27x 10-1] 8.53x 10-10 -1,27X ]0-1] -2.&5x IO-12 F/m

‘4.92x 10-11 -2.05x 10-11 -1.27x 10-11 8.53X lo-f!’ -1.27x 10-11
-1.58.x 10-]1 -4.92x 10-!s -2.06.s 10-12 -1.27.z 10-11 8.S3.Z 1o-1o

F1g 10 The Maxwell coefficient of capacitance for a five-line structure.

TABLE I

AVIMGE NUMBER OF ITERATIVE STEPS REQUUWD FOR THE TEN

I)A I A Pomrrs SHOWN IN FIG, 9 FOR EACH OF THE PROPAGATING

MoIxs AND DIELECTRIC CONSTANTS

&r=lo &r=l

mode
ava no. of iterations avg no. of iterations

I

ee 5,2 5.3 I
eo 46 4.7

oe 6,2 4.9

00 46 4.8

TABLE II
RLDUC rtoN ok BCE AND CALCULATED CAPACITANCE BY

R1; t’,\lNING A DIFFERENT NUMBER OF SAMPLE POINTS OF THE

APPROXIMATED SPATIAL GREEN’S FUNCTION

BCE(%)
no. of

FFT SIZE

iterations
1024 512 256 128

0 100 100 100
1

100
66 6.6 66

2
6.6

0.031 0.031 0.031
3

0.031
0.0027 0.0027 0.0027 0.0026

4 0.00014 0.00014 0.00014 0.00014

C (nF/ m) 0.4317 0.4317 0.,4317 0.4315

can be supported by this transmission line are plotted in

Fig. 9. Each of these curves consists of ten data points and

each data point requires two solutions from (17), one for

~,.z = 1 and one for c,z =10. It took 7.147 s on a Cray
X-MP/48 supercomputer to generate these curves by solv-

ing (17) 80 times. The minimum number of iterations

required is three whereas the maximum is nine. The aver-

age iterative steps required for the ten data points for each

of the propagating modes and dielectric constants are

listed in Table I. The calculated effective dielectric con-

stants agree very well with those presented in [20] and

[21], except for the odd-even mode. For this mode, we

confirm the findings of [21] that the symmetric charge
distribution used in [20] is a poor approximation; this is

evident from the excellent agreement between or results

and those in [21]. It should be noted that if the BCE for

this problem is set at 0.1 percent instead of 0.01 percent,

the calculated effective dielectric constants will remain

relatively unchanged although the number of iterations

and hence the CPU time can be reduced significantly. The

numerical efficiency of the iterative algorithm and the

numerical treatment of the spectral Green’s function have

been demonstrated for this periodic problem.

Next, let us turn our attention to the aperiodic one. The

multiconductor transmission line, as shown in Fig. 4, is
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Fig. 13. Normalized eqmvalent capacitance for a double step discon-

tinuity. ● present method; --- [13].—

1- 4

dla t2—t,
Fig. 12. The normalized capacitance of the circular microstrip patch

Fig. 14. Normahzed excess charge on the orthogonal striphnes shown
shown in Fig. 5.

in Fig, 8 for an even excitation. —top strip; ---- bottom strip;

tL=3, t3=l, w=l, andc, =4.5.

analyzed at a frequency of 16 MHz. To approximate this

aperiodic problem, van den Berg chose a period of 50

times the width of one strip [15]. Assuming we have only

two conducting strips and there are 18 sample points on

each strip, a 1024-point FFT is required. However, if the

approximation of the spectral Green’s function discussed

in Section IV-B is used, only a 128-point FFT is necessary,

and a considerable sating in computation time is realized.

Table II shows the reduction of BCE as well as the

capacitance for the two conducting strips when the param-

eters shown in [15, table III] are used. Although not shown

here, the charge distribution computed by using the spec-

tral Green’s function with 1024 sample points is essentially
the same as those obtained with the modified Green’s

function with 512, 256, or 128 points. As shown in Table

II, the capacitances calculated by using these distributions

are in very close agreement with each other. It should be

noted that the charge density is updated for each iteration

in this paper, and is not evaluated from the potential

function in the final step, as in [15]. The Maxwell coeffi-

cient of capacitance of a five-line structure is given in Fig.

10. To avoid the problem of singularity of the spectral

Green’s function at a = O [15], a ground plane is intro-

duced into the Si layer to make it 10 pm thick. Each

conducting strip has 18 sample points and a 512 FFT is

employed. The BCE reduces to less than 0.01 percent in

three iterations for all five independent excitations. The

accuracy of the solution can be readily improved by in-

creasing the number of sample points on the strips.

For the computer-aided design of three-dimensional

planar MMIC structures, we first need to generate the

modified spectral Greenk function discussed in Section

IV-B. To carry out an inverse FFT of the sampled spectral

Green’s function on a 512x 512 grid requires about 6 s on

the Cray X-MP/48. However, if we initially generate a

data base for each dielectric thickness and dielectric con-

stant, we can subsequently use this modified Green’s func-
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Fig. 15. Normalized excess charge on the orthogonal strip lines shown
in Fig. 8 for an odd excitation. — top strip; ---- bottom strip;

t, =3, (7=1, N’ =1, and c, =4.5.

tion data to analyze either an arbitrarily shaped patch or a

microstrip discontinuity. Figs. 11 and 12 show the normal-

ized capacitances for square and a circular patches, respec-

tively. Using the data from the Green’s function data base,

it takes only three iterations and about 0.3 s for each of the

data points when a 32x 32 FFT is employed. Excellent

agreements with the results in [8] and [9] are obtained.

Fig. 13 shows the normalized equivalent capacitance for

a double step discontinuity. Good agreements with the

results in [13] are obtained. In this structure, a 64 x 64 FFT

is used and it requires only three iterations. It should be

noted that when the ratio of the length to the width of the

discontinuity increases, a larger FFT size is required and

the iterative procedures become less efficient. Figs. 14 and

15 show the variations of the normalized excess charge on

two orthogonal strip lines with strip separation. Fig. 14

shows the excess charge on the top and bottom strips for

an even excitation, whereas the corresponding results for

the odd excitation appear in Fig. 15. For the even excita-

tion, the excess charges on the two strips are equal at

t* = 2, because the orthogonal strip lines are symmetric for

this value. For the odd excitation, the excess charges are

always equal and opposite.

VIII. CONCLUSIONS

A class of MMIC structures has been analyzed in this

paper using as numerically rigorous iterative procedure.

The transfer-matrix method is employed for the problem

of deriving the spectral Green’s functions for a multi-

layered structure because of the convenience with which

the method can be applied to this problem. The periodic

nature of MMIC structures surrounded by electric side

walls allows one to achieve numerical efficiency via the use

of the FFT. For the periodic problem, a numerical proce-

dure for treating the Green’s function, which has an in-

finite support in the spectral domain, is discussed. This

treatment enables one to use the FFT with only a finite

number of points. On the other hand, further approxima-

tion yields reasonably good spatial Green’s functions, as

evident from the numerical results, such that an FFT of

much smaller size can be used for the aperiodic problem.

For all the structures discussed in this paper, the boundary

condition error reduces to a level below 0.01 percent

within a few iterations. This leads us to conclude that the

iterative approach described in this paper is well suited for

MMIC design.
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