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Analysis of MMIC Structures Using an
Efficient Iterative Approach

CHI HOU CHAN, MEMBER, IEEE, AND RAJ MITTRA, FELLOW, IEEE

Abstract —In this paper a class of two- and three-dimensional monolithic
microwave integrated circuit (MMIC) structures is theoretically analyzed
using an efficient iterative technique. The transfer-matrix approach to
constructing the spectral Green’s functions of multilayered structures is
adopted. Discretization of the continuous functions and exploitation of the
periodicity of the MMIC structures enclosed by side walls lead to a
discrete convolution operation, which can be carried out numerically
efficiently using the FFT algorithm. The spectral Green’s functions are
modified for both the periodic and aperiodic structures to improve the
numerical efficiency of the iterative algorithm. Numerical results are
presented and compared with available data.

I. INTRODUCTION

LANAR MICROSTRIP structures used in MMIC
_design, such as multiconductor transmission lines,
patches, and discontinuities, have been extensively analyzed
in the past two decades by several authors using the
quasi-TEM approximation. This approximation avoids ex-
tensive numerical calculations in the full-wave analysis,
and yet provides useful results sufficiently accurate for
practical applications up to a few gigahertz.

Coupled planar transmission lines have been analyzed
using the following approaches: conformal mapping [1];
dielectric Green’s function method [2]; variational method
[3]; and Galerkin method in the spectral domain [4].
Multiconductor transmission lines have been treated in [5]
and, more recently, in [6] and [7]. There is no theoretical
limit to the number of dielectric layers or conducting lines
in these formulations; however, they require either the
solution of a large matrix equation or extensive analytical
or numerical calculations.

Finite-sized or lumped circuit elements such as micro-
strip patches are also commonly used in MMIC’s. Capaci-
tances of square and circular patches have been calculated
in [8]-[11]. In the above papers, accurate and rapid solu-
tions have been obtained using the spectral Gelerkin pro-
cedure with a set of prechosen basis functions. However,
the choice of basis functions for an arbitrarily shaped
patch is often not readily available.

For computer-aided design of MMIC’s, microstrip dis-
continuities are often represented by equivalent circuit
parameters [12]. [13]. One of these parameters, the equiv-
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alent capacitance of a microstrip discontinuity, is calcu-
lated by discretizing the excess charge distribution [13] in
the discontinuity and its surrounding regions using subdo-
main basis functions, e.g., square pulses, and solving for
the unknown amplitude of these pulses with the standard
moment method procedure. However, the matrix equation
resulting from an application of this approach can be very
large and its elements often require an excessive computa-
tional time.

Recently, an iterative scheme based upon the minimiza-
tion of the integrated square error has been developed by
van den Berg [14]. It has been applied to the problem of
analyzing the electric-field problem of an interdigital
transducer in a multilayered structure [15] and to a class of
multiconductor cylindrical transmission lines [16]. In this
iterative procedure, the large matrix storage requirement is
alleviated and numerical efficiency is obtained by using
the fast Fourier transform algorithm (FTT).

In this paper, a variety of two- and three-dimensional
MMIC structures are analyzed using the iterative proce-
dure described in [14, table V] by van den Berg for the case
where the number of dielectric layers in these MMIC
structures is arbitrary. It is assumed that the principal axes
of the permittivity tensor and the conductivity tensor
coincide and that only the diagonal terms are nonzero. The
choice of basis and testing functions, as well as the numeri-
cal treatment of the Green’s functions that improves the
numerical efficiency of the algorithm, is discussed. In
order to apply the FFT, all the dimensions of the MMIC
structures are chosen to be multiples of the discretization
value Ax or Ay. Numerical results for each of the MMIC
structures discussed in this paper are presented and com-
pared with published data, when available.

II. OUTLINE OF THE THEORETICAL PROCEDURES

The general configuration to be investigated is shown in
Fig. 1(a) and (b) with the permittivity tensor ¢ and conduc-
tivity tensor o given by

¢, 0 0 oo, 0 O
e=0 € 0 o={0 o 0. (1)
0 0 e, 0 0 o

We define the regions that coincide with the conducting
strips as the domain D of the problem and the comple-
mentary region as the range R. In this study, the strips are
assumed to be infinitely thin, although the extension to the
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Fig 1. The general multilayered MMIC structures. (a) One layer of

strips. (b) Two layers of strips.

finite thickness strips can be found elsewhere [3], [16].
Under the quasi-TEM approximation, we may assume
v X E=0. With the factor e/’ suppressed, the electric
field E and the electric potential ¥ are related by

E=-vV. (2)

The electric field, in turn, is related to the current density
as follows:

J= (0 + jwe)-E. (3)
Using the continuity equation ¥ -J = 0 in conjunction with

(3), we obtain a differential equation satisfied by the
electric potential V' for each of the layers:

v-[(o+ jwe)-vV]=0. (4)

The Green’s function for the problem can be constructed
from the solution of this differential equation subject to
appropriate boundary conditions. The boundary condi-
tions for these MMIC structures are the continuity of the
electric potential 7 across any interface, constant voltage
excitation U on the conducting strips or patches, and a
nonzero current density J confined to the domain D. Once
the Green’s function is derived, we can simply cast the
problem into one of solving the integral equation

U(s) = [ 6(s",5)(jap () & (s)

where G is the Green’s function in the spatial domain and

p, is the unknown surface charge distribution. The term-

Jjwp, replaces the role of the current density J. The total
charges on the conductors are obtained by integrating p, in
the domain D. Once the total charge on each of the
conducting strips or patches is known, the various design
parameters of the MMIC structures, e.g., the capacitance,
inductance, effective dielectric constant, and the character-
istic impedance, can be readily obtained [16].

III. THE SPECTRAL GREEN’S FUNCTIONS

Prior to formulating the integral equation using the
spectral domain approach, we need to derive the spectral
Green’s function for the geometry under consideration.
The spectral Green’s function can be derived by solving
Laplace’s equation together with the appropriate boundary
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conditions of the structure [3], [16]. However, a new de-
rivation of the Green’s function is required whenever an
additional layer of dielectric is added to the structure. Two
approaches, which are quite similar to each -other, have
recently been introduced for deriving the spectral Green’s
functions for a multilayered structure. A simple recurrence
formula has been presented in [17] and a transfer-matrix
formulation has been discussed in [15]. In both of these
approaches, an additional dielectric layer only results in an
extra 2 X2 matrix multiplication in the transfer matrix or
the recurrence formula; hence, these approaches are well
suited for computer-aided design of MMIC’s. In this paper,
we adopt the transfer-matrix formulation of [15], because
this procedure is simple to follow.

The details of deriving the spectral Green’s function for
the structure in Fig. 1(a) using the transfer-matrix ap-
proach can be found in [15], and only the final result is
included here for completeness. The derivation procedure
can be readily extended to the structure consisting of two
or more layers of strips by enforcing the additional
boundary conditions on the interfaces at which the extra
layers of strips are located. The spectral Green’s function
for the structure in Fig. 1(b), which has two layers of
strips, is presented here with the details of the derivation
omitted.

The spectral Green’s function for the convolution in-
tegral of (5), employed to analyze the structure of Fig. 1(a),
is given in [15]. It reads

. 1
Gla)= —F————— 6
( ) Yf(a)—ﬁ-YT(a) ( )
where
TN, + Y, T,
Y1+(a) = 7D Ly 70D (73)
1M T Iyds sy
and
T1§21})Nr - Y(N+ 1)T1('2’-%)N'
Yo (@) =- =it (7b)

— (1,2)
von — Yy oy

If the top layer of the structure is shielded, i.e., the plane
at z =z,, is grounded, the expression for Y;"(a) is mod-
ified as follows:

2,2
Tl(—> 1%/1

1,2y *
T],(—»]{/[

Y, (a) = (82)

Similarly, if the plane at z = z,. is grounded, we have

2,2
T#*2y,

1,2
T

Yy (a) = (8b)

The transfer matrix T appearing in the above expression is
defined as follows:

1,1 1.2)
|: Tl(» 12/[ Tl(—>

2,1 2.2 =.
Tl(—> RI Tl(H ])W m

] 1 [Tle 2=z ©)



98 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 1, JANUARY 1988

where
coshy z — Y lsinhy, z
T (a,z)= . m " 10
m(a:2) —-Y,sinhy,,z coshy,,z (10)
2
Yol@) =lal(i,, /K, )" (11)

(12)
(13a)
(13b)

. 1/2
Y, (@) = jolal(i, e, )"
Kx,m = €x,m + ox,m/jw

K =€, m+oz,m/Jw

and the square roots are defined as Re(---)?> 0. Ex-
pressions similar to (9) to (13) can readily be obtained for
the layers below z = 0 by replacing 1, M, and m by 1’, N,
and »n’ in (9) to (13), respectively.

Following the derivation given in [15], and enforcing the
boundary conditions on the two layers of strips, we obtain
the spectral Green’s function for the structure shown n
Fig. 1(b). It is given by

G’(a) — éll(a) GNIZ(a)
G~21(0‘) C‘522(0‘)
— Y, +Y/cothy,d Y, /sinhy;.d
Cla C
S T
Y, /sinhy,.d Y + Y, cothy,d
C(a) C(a)

where
Cla)=[-Y Y, +(¥{' —Y; )Yy cothy,d +Y2]. (15)

Note that the spectral Green’s function is a 2 X2 matrix
because of the coupling between the two layers of strips.

It is preferable to use the spectral Green’s function given
in (6) rather than the spatial one, because we can effi-
ciently compute the convolution integral in (5) via the
FFT. In the next section, we go on to discuss some
numerical aspects for solving (5) for some aperiodic and
periodic problems arising in MMIC design. Some of these
numerical aspects have been discussed by Peterson [18]
and Chan and Mittra [19].

IV. NUMERICAL CONSIDERATIONS FOR APPLYING
THE FFT 1O PERIODIC AND APERIODIC PROBLEMS

Strictly speaking, the FFT algorithm, which is discrete
and circular in nature, is directly applicable for analyzing
periodic geometries. However, it can be still used to ad-
dress aperiodic problems if they are approximated by
introducing two electric side walls that are sufficiently
removed from the center strips. Additional approxima-
tions, which we will discuss in the latter part of this
section, can be used to reduce the size of the FFT for the
aperiodic case, and to make the iterative procedure
numerically efficient. A discussion of the numerical treat-
ments for the periodic and aperiodic structures is given
below.

Elecltric
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Fig. 2. Periodic MMIC structures. (a) Periodic structure without side

walls. (b) Periodic structure with two side walls.

A. Periodic Structures

The spectral Green’s function given in Section III can be
employed for periodic structures, although special numeri-
cal treatment is necessary to apply the FFT to this Green’s
function because of its infinite support. To demonstrate
how the FFT can be applied correctly, we consider the
periodic structures shown in Fig. 2(a) and (b). The periodic
cell of Fig. 2(a), or the region between the two side walls in
Fig. 2(b), both of which have the dimension L, is dis-
cretized into N subregions, where N = 2", Assuming that
the potential U and the surface charge density p, are
approximately constant over the subregions, U and p, can
be expressed as a sum of rectangular pulse basis functions
with known amplitudes U(n) and unknown amplitudes
p,(n), respectively. After some manipulation, the convolu-
tion integral in (5) can then be rewritten as

O[U(nAx)]
= @[Ffl{é(a)g(a)(FFT(ps(n))*S(n + mN))}] (16)

where © is a truncation function with value equal to 1
when nAx is inside the domain D and zero otherwise.
Similarly, p,(n) is nonzero only if nAx€ D. F ! repre-
sents the inverse Fourier transform operation and the FFT
is defined from — N/2 to N/2—1; Ax and « are equal to
L/N and (n+mN)27/L with —o0<m<oco, respec-
tively; S(«) =sin(a)/a is the Fourier transform of the
rectangular pulse. The asterisk in (16) represents a con-
volution operator. The support of the inverse Fourier
transform in (16) is still infinite; however, this could be
overcome by applying the Galerkin procedure, i.e., multi-
plying both sides by the rectangular pulses and integrating
over the corresponding subregions. We then obtain

O[U(n)] =O[FFTY{G"(a) FFT(p,(n))}] (17)

where

m+ oo

G- ¥

M= -0

G(a)S()S*(a). (18)

The asterisk represents the complex conjugate operation
and o' = (n + mN)27/L. The truncation on m depends on
how fast the product of the spectral Green’s function and
the magnitude square of the Fourier transform of the basis
function decays away from a=0. The charge density
distribution in (17) of the periodic structures can readily
be solved for via the iterative algorithm outlined in [14].
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The procedure outlined above is applicable only to
periodic structures, and a different approximation scheme
is required for the aperiodic case. This is described in the
following subsection.

B. Aperiodic Structures

An aperiodic structure can be approximated by a peri-
odic one by introducing two side walls far away from the
conducting strips. This is accomplished by letting L in
Fig. 2(b) to be sufficiently large, such that the side walls do
not have a significant effect on the electric potential around
the strips. We can then follow the same procedure as in the
periodic case discussed above. However, this requires us to
use a large value of N and increases the computational
time significantly. We show below how we can circumvent
the problem by further approximating the Green’s func-
tion such that a much smaller N can be used without
compromising the accuracy of the computation.

The Green’s function can be approximated by assuming
that it is constant over the individual subregions in the
spatial domain. Let the potential U and the surface charge
density p, be discretized, once again using rectangular
pulse basis functions. From signal processing theory, we
can show that the convolution integral in (5) can be carried
out with a (2M —1)-point FFT, where M is the number of
subregions from the left edge of the leftmost strip to the
right edge of the rightmost strip. If we use a radix-2
N-point FFT, we should choose the minimum N such that
N> (2M-1). Using this criterion, the spatial Green’s

function can be obtained from the spectral one via a

numerical transform.

The spectral Green’s function in Section III is sampled
at the values of 2an /NNAx, where — NN/2<n< NN/2
—1 and NNA = L. Typically, we choose NN =1024 for a
one-dimensional problem and NN X NN =512X512 for a
two-dimensional one. These data points are inversely Fou-
rier transformed into the spatial domain by using an
NN-point FFT. Although NN is large, this FFT operation
need be carried out only once. The approximated spatial-
domain Green’s function is then truncated such that only
those terms within the range — NN/2 < - N/2<n<
N/2—1< NN/2—1 are retained. It is noted that an
equivalent procedure is discussed in [15], except all the NN
terms were retained there.

To illustrate the versatility of the iterative approach in
solving (5) for the periodic and aperiodic MMIC structures
under the approximation mentioned above, we will con-
sider both the two- and three-dimensional problems in the
following sections.

V. Two-DIMENSIONAL PROBLEMS

Planar transmission lines find many applications in
MMIC design as well as in microelectronic packaging.
These transmission lines are usually assumed to have in-
finite extension in the y direction, as shown in Fig. 1. In
this section, we will consider two examples of these trans-

mission lines, viz., a broadside, edge-coupled symmetric -

strip transmission line which is a periodic problem and a
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A broadside, edge-coupled, symmetric strip transmission line.

Fig. 3.

multiconductor planar transmission line in a piezoelectric
substrate-—an aperiodic one. Although not discussed here,
many other types of planar transmission lines, e.g., micro-
strip, buried microstrip, and strip lines, can also be analyzed
by utilizing the novel representation of the spectral Green’s
function.

A. Broadside, Edge-Coupled, Symmetric Strip
Transmission Line

Recently, considerable interest has been shown in using
a broadside, edge-coupled, symmetric strip transmission
line in MMIC’s as a basic building block for directional
couplers, filters, and broad-band mixers [20], [21]. A
schematic diagram of one of these transmission lines is
depicted in Fig. 3. This structure can support four propa-
gating modes referred to as

1) even—even mode (ee): Uy =U, =U, =1,

2) even—odd mode (e0): Uy =Uj, =~ Uy = —U,,
3) odd-even mode (oe): U, = — U, =Uy=—U,,
4) odd—odd mode (00): Uy = —U,, = — Uy =U,,.

Equation (16) can be solved iteratively using the Green’s
function derived in (14). Due to the symmetry of the
problem, the characteristic impedance (Z) and the effec-
tive dielectric constant (e ) can be written in terms of the
total charge Q on one of the lines as

ZO
£ 0007 (19)
0
€eff = —Q—(; (20)

where Q and Q, are the total charge on one of the strips
with and without the dielectric, respectively, and Z,, is the
characteristic impedance in free space. The total charge on
the strip is obtained by integrating the charge density
distribution across the strip after solving (16).

Although this structure is symmetric, the iterative al-
gorithm is written such that each of the strip’s widths w as
well as the separation between the strips s can be different.
Some numerical results on the effective dielectric constant
of the structure shown in Fig. 3 will be given in Section
VII.

B. Multiconductor Planar Transmission Lines in a
Piezoelectric Substrate

To illustrate the numerical efficiency achieved by apply-
ing the numerical treatment of the Green’s function for the
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aperiodic structure, we consider the multiconductor planar
transmission lines in a piezoelectric substrate shown in
Fig. 4. van den Berg and his associates have successfully
applied iterative procedures to solve the electric-field prob-
lem of an interdigital transducer in a multilayered struc-
ture [15]. In [15], the conducting strips are excited such
that the net electric current in the configuration vanishes.
Furthermore, integration of the potential along the inter-
face at which the strips are located also yields zero. How-
ever, in a general transmission line structure, the voltage
excitation applied to the strips can be arbitrary. This is the
case, for instance, when one is interested in computing the
Maxwell capacitance matrix of an N-line configuration
and needs to solve (5) N times for N independent sets of
excitations. To simulate the infinite domain in which the
conducting strips are located, a period of 50 times the
width of one strip is used in [15]. In Section VII, we will
demonstrate how the numerical treatment discussed in
Section IV reduces the size of the period actually required.

VI. THREE-DIMENSIONAL PROBLEMS

When the width of the transmission line in Fig. 1 varies
along the length of the line, or the line has a finite length,
the two-dimensional problem becomes three-dimensional
in nature. The spectral Green’s function given in Section
HI can be modified to treat the three-dimensional prob-
lem. However, to keep the modification simple, we assume
that the diagonal elements of the permittivity tensor in (1)
are all equal and set all the elements of the conductivity
tensor in (2) equal to zero. The three-dimensional struc-
tures discussed in this section are aperiodic and, in order
to apply the FFT, we need to introduce four electric side
walls sufficiently far away from the conducting patches or
discontinuities under consideration. The separations of the
side walls in the x- and y directions are designated as L,
and L,, respectively. To obtain the three-dimensional
spectral Green’s function G(f,{), we simply replace the
parameter a in (6) and (14) with 8%+ ¢?, where B =
n2z/L, and {=m2a/L . Similarly, the one-dimensional
FFT becomes two-dimensional in solving (5). The trunca-
tion of the spatial Green’s function in the y direction
follows the same criterion for the one in the x direction.
Only some illustrative three-dimensional structures are dis-
cussed in this section. Extension to treat many other
structures, e.g.. two arbitrarily shaped coupled patches
which lie on the same plane or are separated by a dielectric
slab, is straightforward.

Ground Ground
3 A Plene _g_ Plane
Square Patch T Circular Patch
Fig. 5. A square and a circular microstrip patches

A. Microstrip Patches as Lumped Circuit Elements

In MMIC’s, many finite-sized or lumped elements are
employed to realize the desired functional devices. Hence
the analysis of these finite-sized elements is of interest.
Among these finite elements, square and circular patches
(shown in Fig. 5) have been analyzed more frequently than
the others because the charge densities on these structure
can be expanded in terms of a set of entire domain basis
functions [8]-{11] with certain special properties, viz., ana-
lytical Fourier transformability, built-in edge condition for
the charge distributions, and ability to generate asymptotic
formulas [11]. However, for an arbitrarily shaped patch,
the choice of these entire domain basis functions is not
readily available and this prompts us to use subdomain
basis functions, such as the rectangular pulses discussed in
Section IV,

In order to employ the rectangular pulse type of basis
functions to solve (5) and to apply the numerical treatment
of the Green’s function discussed in Section IV, we need to
carry out an inverse FFT on a large-sized array sampled
on the two-dimensional spectral Green’s function. For-
tunately, in a typical fabrication scenario, the thickness
and the permittivity of the dielectric are fixed at certain
prechosen values. Hence, for this type of situation, we
need to carry out the inverse FFT only once and store the
truncated spatial Green’s function, thus generated, as a
data base for MMIC designs.

Once the spatial Green’s function has been obtained, (5)
can be solved with the potential U on the patch set equal
to 1 V. The capacitance of the patch is then given by

C=_[DP>(5)d5- (21)

Numerical results for the normalized capacitance will be
presented in Section VII for a square and a circular patch.
Because of discretization using rectangular pulses, the pe-
riphery of the circular patch, or of any other arbitrary
shape, can only be approximated in a piecewise manner.

B. Equivalent Capacitances for Discontinuities in Microstrip
Lines and at the Crossing of Orthogonal Strip Lines

Abrupt change of line width in planar transmission lines
is often unavoidable for printed circuit routing. Some-
times, such a discontinuity is even introduced deliberately
to realize an inductance or a capacitance. Another form of
discontinuity is found in the vicinity of a crossing between
two orthogonal strip lines, where there exists a strong
coupling between these strip lines. Both of these discon-
tinuities, viz., the change of width and the cross coupling
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Fig. 7. Double step microstrip discontinuities.

between two striplines, can be characterized by an equiv-
alent circuit of the type shown in Fig. 6. In this paper, we
will only address the problem of computing the equivalent
capacitance, except to mention that a similar procedure
can be used to derive the equivalent inductance of the
discontinuity.

To find the equivalent capacitance of a double step
discontinuity, Kitazawa [22] has formulated the problem
of determining the excess charge density on the transmis-
sion line in the presence of the discontinuity. The same
formulation is employed herein for the first type of discon-
tinuity problem and is later extended to characterize the
disturbance of surface charge density near the crossing of
two orthogonal striplines.

1) Microstrip Discontinuities: Two different microstrip
discontinuities are shown in Fig. 7(a) and (b); D, denotes
the regions with uniform width, whereas D, and D, denote
the irregular regions. To characterize the discontinuity, we
need to find, as a first step, the charge density p,, on the
uniform line denoted by D, for a 1 V excitation, using the
procedures outlined in Section V. We define the excess
charge density p,., as the difference between the charge
density of the structure D and that of the uniform struc-
ture D, when both are excited by 1 V; it should be noted
that p,, is only defined on D. After some manipulation,
we have

b= [ G(jep,c,) ds (22)
D

where for the discontinuity in Fig. 7(a)
0 on D,

= 2
P«=V1- [ G(jwpo)ds  on D, and D, (23)
Dy .
and for the discontinuity in Fig. 7(b)
o= [ Gjo)(patpy)ds. (24)
Dy. D,

Fig. 8. Two orthogonal strip lines.

The densities py and p, are p, in regions D; and D,,
respectively. The excess charge is essentially negligible,
beyond a distance approximately equal to the actual line
width away from the discontinuity [13]. Hence, the domain
of integration in (22) can be limited to the region bounded
by the planes P, and P, indicated in Fig. 7.

Once the excess charge density has been solved for, the

equivalent capacitance AC can be defined as

AC Llpsexds + Llpso ds (25)
where S, and S, are the regions bounded by the planes P;,
P, and T), T, respectively. Numerical results of the nor-
malized equivalent capacitance for double-step discontinu-
ities will be presented in Section VII.

2) Crossing of Two Orthogonal Strip Lines: The surface
current and charge density on a strip line, near the vicinity
of its crossing with another stripline which is orthogonally
placed above or below it, is expected to be a perturbation
from those on an isolated strip line. The disturbance of the
surface current or the charge density on the strip line can
also be characterized by an equivalent capacitance. Since
either an even (U;=U,=1 V) or odd (U;=-U,=1 V)
excitation can be applied to the two orthogonal strip lines
depicted in Fig. 8, we need to compute both the even and
odd equivalent capacitances for the strip lines.

Excess charge densities p,.,; and p,.., can be defined
for the two orthogonal strip lines similar to the one for the
microstrip discontinuity, These excess charge densities
satisfy the following equations:

P, 1=/ Gyp x1ds+f G13Psex2 ds on D, (263)
eX Di § €] D2

Per2 ‘_”_/ G101 dS +/ Gppyexn ds on D, (26b)
s Dy
where

Pex1 = “fDGlzpsz ds on D, (2,73)

Bopy = — f Gyo ds  onD,. (27b)
D, 2

p,, and p,, are the charge densities on the striplines D,
and D,, respectively, in the absence of the other line.
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Fig. 9. Effective dielectric constants of the broadside, edge-coupled
microstrip with inverted dielectric shown in Fig 3; s/b=d/b=0.2,
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The excess charge densities are solved by the iterative
algorithm, and the equivalent capacitance can be defined
similar to the one for the microstrip discontinuity. Hence,
the equivalent capacitances for the orthogonal striplines
can be expressed as

AC, = / Pyerds + f p, ds for strip line D,  (28a)
S1y S12

AC, = f P, oa ds + f p,, ds for strip line D, (28b)
Ao Sna

where S;;, S1,, S, and §,, are the regions bounded by
the planes Py, Py, Ty, T5, Py, Py, and Ty, T,
respectively. Numerical results for the excess charge of two
equal-width orthogonal strip lines for both even and odd
excitations will be presented in the next section.

VIL

Numerical results for the MMIC structures discussed
above will now be presented. The iterative scheme em-
ployed to derive the results is based upon an improved
iterative approximation to the solution of the functional
equations discussed in [14]. The iterative procedure is
terminated when the boundary condition error (BCE) [15],
[19] is smaller than 1x107%, or 0.01 percent. This iterative
procedure is very efficient and only a few iterations are
required for all the structures analyzed in this paper.

To illustrate the numerical efficiency of the iterative
algorithm, let us first consider the broadside, edge-coupled,
symmetric strip transmission line shown in Fig. 3. The
spectral Green’s function for this structure is constructed
and modified according to (14) and (18), respectively. Due
to the rapid decay of the product of the spectral Green’s
function and the magnitude square of the transform of the
rectangular-pulse basis function away from « =0, the sum-
mation index m in (18) is chosen to be zero. This modified
spectral Green’s function is substituted into (17) and is
solved iteratively using a 512-point FFT. The effective
dielectric constants for the four propagating modes that
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Fig 10 The Maxwell coefficient of capacitance for a five-line structure.

TABLE1
AVIRAGE NUMBER OF ITERATIVE STEPS REQUIRED FOR THE TEN
DA1A POINTS SHOWN IN FIG. 9 FOR EACH OF THE PROPAGATING
MODES AND DIELECTRIC CONSTANTS

€, =10 €, =1
mode
avg no. of iterations | avg no. of iterations
ee 5.2 5.3
80 46 47
oe 6.2 4.9
00 46 4.8

TABLE II
RLpUCTION OF BCE AND CALCULATED CAPACITANCE BY
RETAINING A DIFFERENT NUMBER OF SAMPLE POINTS OF THE
APPROXIMATED SPATIAL GREEN’S FUNCTION

BCE(%)
no. of
FFT SIZE
iterations
1024 512 256 128
0 100 100 100 100
1 66 6.6 66 6.6
2 0.031 0.031 0.031 0.031
3 0.0027 0.0027 0.0027 0.0026
4 0.00014 0.00014 0.00014 0.00014
C (nF/m) 0.4317 0.4317 0.4317 0.4315

can be supported by this transmission line are plotted in
Fig. 9. Each of these curves consists of ten data points and
each data point requires two solutions from (17), one for
€,,=1 and one for ¢,,=10. It took 7.147 s on a Cray
X-MP /48 supercomputer to generate these curves by solv-
ing (17) 80 times. The minimum number of iterations
required is three whereas the maximum is nine. The aver-
age iterative steps required for the ten data points for each
of the propagating modes and dielectric constants are
listed in Table I. The calculated effective dielectric con-
stants agree very well with those presented in [20] and
[21], except for the odd-even mode. For this mode, we
confirm the findings of [21] that the symmetric charge
distribution used in [20] is a poor approximation; this is
evident from the excellent agreement between or results
and those in [21]. It should be noted that if the BCE for
this problem is set at 0.1 percent instead of 0.01 percent,
the calculated effective dielectric constants will remain
relatively unchanged although the number of iterations
and hence the CPU time can be reduced significantly. The
numerical efficiency of the iterative algorithm and the
numerical treatment of the spectral Green’s function have
been demonstrated for this periodic problem.

Next, let us turn our attention to the aperiodic one. The
multiconductor transmission line, as shown in Fig. 4, is
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Fig. 12.

analyzed at a frequency of 16 MHz. To approximate this
aperiodic problem, van den Berg chose a period of 50
times the width of one strip [15]. Assuming we have only
two conducting strips and there are 18 sample points on
each strip, a 1024-point FFT 1s required. However, if the
approximation of the spectral Green’s function discussed
in Section IV-B is used, only a 128-point FFT is necessary,
and a considerable saving in computation time is realized.
Table II shows the reduction of BCE as well as the
capacitance for the two conducting strips when the param-
eters shown in [15, table III] are used. Although not shown
here, the charge distribution computed by using the spec-
tral Green’s function with 1024 sample points is essentially
the same as those obtained with the modified Green’s
function with 512, 256, or 128 points. As shown in Table
11, the capacitances calculated by using these distributions
are in very close agreement with each other. It should be
noted that the charge density is updated for each iteration
in this paper, and is not evaluated from the potential
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function in the final step, as in [15]. The Maxwell coeffi-
cient of capacitance of a five-line structure is given in Fig.
10. To avoid the problem of singularity of the spectral
Green’s function at a=0 [15], a ground plane is intro-
duced into the Si layer to make it 10 um thick. Each
conducting strip has 18 sample points and a 512 FFT is
employed. The BCE reduces to less than 0.01 percent in
three iterations for all five independent excitations. The
accuracy of the solution can be readily improved by in-
creasing the number of sample points on the strips.

For the computer-aided design of three-dimensional
planar MMIC structures, we first need to generate the
modified spectral Green’s function discussed in Section
IV-B. To carry out an inverse FFT of the sampled spectral
Green’s function on a 512X 512 grid requires about 6 s on
the Cray X-MP/48. However, if we initially generate a
data base for each dielectric thickness and dielectric con-
stant, we can subsequently use this modified Green’s func-
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tion data to analyze either an arbitrarily shaped patch or a
microstrip discontinuity. Figs. 11 and 12 show the normal-
ized capacitances for square and a circular patches, respec-
tively. Using the data from the Green’s function data base,
it takes only three iterations and about 0.3 s for each of the
data points when a 32x32 FFT is employed. Excellent
agreements with the results in [8] and [9] are obtained.

Fig. 13 shows the normalized equivalent capacitance for
a double step discontinuity. Good agreements with the
results in [13] are obtained. In this structure, a 64 X 64 FFT
is used and it requires only three iterations. It should be
noted that when the ratio of the length to the width of the
discontinuity increases, a larger FFT size is required and
the iterative procedures become less efficient. Figs. 14 and
15 show the variations of the normalized excess charge on
two orthogonal strip lines with strip separation. Fig. 14
shows the excess charge on the top and bottom strips for
an even excitation, whereas the corresponding results for
the odd excitation appear in Fig. 15. For the even excita-
tion, the excess charges on the two strips are equal at
t, = 2, because the orthogonal strip lines are symmetric for
this value. For the odd excitation, the excess charges are
always equal and opposite.

VIIIL.

A class of MMIC structures has been analyzed in this
paper using as numerically rigorous iterative procedure.
The transfer-matrix method is employed for the problem
of deriving the spectral Green’s functions for a multi-
layered structure because of the convenience with which
the method can be applied to this problem. The periodic
nature of MMIC structures surrounded by electric side
walls allows one to achieve numerical efficiency via the use
of the FFT. For the periodic problem, a numerical proce-
dure for treating the Green’s function, which has an in-
finite support in the spectral domain, is discussed. This
treatment enables one to use the FFT with only a finite
number of points. On the other hand, further approxima-

CONCLUSIONS

tion yields reasonably good spatial Green’s functions, as
evident from the numerical results, such that an FFT of
much smaller size can be used for the aperiodic problem.
For all the structures discussed in this paper, the boundary
condition error reduces to a level below 0.01 percent
within a few iterations. This leads us to conclude that the
iterative approach described in this paper is well suited for
MMIC design.
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